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WITH AND WITHOUT A PROPELLER

By M. J. Queijo and Herman S. Fletcher

SUMMARY

An experimental investigation has been made at low speed to deter-
mine the Magnus effect on various sections of a body of revolution of
which several sections could be rotated either as individusl units or
in combinations. The investigation included the measurement of the
Magnus effect on the body alone and also on the body with a three-blade
propeller. The tests were made over an angle-of-sideslip range from
-5° to 30°, and at rotational speeds from O %o 8,000 rpm with the pro-
peller off and from O to 5,000 rpm with the propeller on.

The results of the investigation showed that with the propeller
off, rotation of sections in the expanding portiom of the body (that is,
at the nose of the body) produced no appreciable Magnus force on these
sections. However, rotation of these sections did produce an appreciable
Megnus force on the part of the body downstream of the maximum diameter.
These results esre believed to be associated with the posltion and strength
of the vortices shed from the body. With the propeller off, the center
of pressure of the Magnus force on the body was about 70 percent of the
body length behind the nose and moved forward with increase in rotational
speed. With a propeller on the body of revolution, a large Magnus force
was developed on sections of the body behind the propeller. The Magnus
force on sections zhead of the propeller was small and independent of
whether these sections were rotating.

INTRODUCTION

A rotating body placed in an airstream experiences & force component,
due to rotation, which is normal to the plane defined by the axis of rota-
tion and the direction of the relative wind. This force (generally
referred to as the Magnus effect) can have an important effect on the
motion of a body which is rotating es & unit or which has some externsl
component rotating and, hence, has been the subject of many experimental
and theoretical investigations. (See refs. 1 to 4, for example. )
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Since many present-day missiles are spin-stebilized, the Magnus
effect has become of great interest in regard to the stability of such
missiles. (See refs. 5 and 6, for example.) In experimental investiga-
tions of the Magnus effect, the entire missile generally 1s spun at
‘various speeds and the resultant force and moment due to rotation are
measured. This procedure yields the net Msgnus force, but ylelds no
information on the buildup of the force along the body. In theoretical
investigations, the epproach generaslly has been to consider only ecircular
‘cylinders, hence, nose-shape effects were neglected.

The purpose of the present investigation 1ls to determine the Magnus
force on flve sections of a body of revolution of which the first four
sections can be spun either as individual units or in combinations.
.Measurements of the Magnus force and the resulting moment are made for
varlous sections of the body; hence, it is possible to determine which
sections of a rotating body are effective in producing a Magnus force on
themselves and on stationary sectlons of the body. The apparatus used in
the investigation also makes it convenlent to determine whether the Magnus
force on a sectlon ahead of the propeller depends on whether the section
ig rotating or stationary.

SYMBOLS

The data presented herein are referred to the body system of axes
shown In figure 1. All forces and moments were measured about the moment
center located on the fuselage center line at a distance of 31.5 inches
from the fuselage nose. The symbols and coefficlents used are defined as
follows:

A maximum cross-sectional ares of body, sq-ft
Cr, 1ift coefficient, Lift

Lovaa

2
CL,o . 1ift coefficient with stationary sections
m - pltching-moment coefficient, _Pitc?ing moment

EQVE- 1A

Cm,o Pitching-moment coefficient with statlonary sections
Cq torque coefficient, Torque

1 w2
=pV=1A
2
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Cp thrust coefficient, %EEEEE
EpV A
1 body length, 3.75 ft
r body radius, ft unless otherwlse specified
v free-streem velocity, ft/sec
X ax%:l distance along body axis, measured from body nose,
X axiel distence to center of pressure of Magnus force, ft
B angle of sldeslip, deg
o alr density, slugs/cu £t

MODEL: AND APPARATUS

The model used in this investigatlon was a body of revolutlion
b5 inches long and was made primarily of magnesium. The model was made
in five sections (see fig. 2), of which the first four could be rotated
individually or in the various combinations listed in table I. The
sectlions were rotated in a clockwise direction when viewed from down-
stream. The model and sting support were designed so that the aerody-
nemic forces could be measured on the entire body or on the sections
indicated in table I.

A 27-horsepower water-cooled electric motor was used to spin the
sectlions. The sectlions were geared to the motor by means of a hollow
shaft. Through the hollow shaft passed a statlonary shaft which was
used to hold nonrotating sections upstream of the rotating sections.
The rotationael speed of the drive motor was measured by means of a
Stroboconn unit.

The motor and model sections on which forces and moments were to be
measured were riglidly fastened to & sting-type support which, in turn,
was attached to a six-component balance system. Sections on which forces -
were not to be measured were fastened to the sting falring and became
part of the falring.

The propeller used In part of the investigation was formed by
mounting three duralumin blades in equally spaced holes in one of the
rotating sections. (See fig. 3.) The blades were fastened at the center
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of the section. All the holes in the model were plugged before testing
except those in which the propeller blaedes were mounted. In tests
involving several rotating sections and the propeller, the propeller wes
always on the section farthest from the nose of the model. The diameter
of the propeller was 22.89 inches.

TESTS

Tests of this investigation were made in the 6- by 6-foot test sec-
tion of the Langley stability tumnel at zero angle of attack and for
sngles of sideslip from -5° to 30°. Tests without the propeller were
mede at a dynamic pressure of 24.9 pounds per square foot, which corre-

sponds to & Mach number of 0.1k and a Reynolds number of 3.86 X 106 vesea
on the body length. Rotatlional speeds of the sections were varied from
0 to 8,000 rpm for the propeller-off configurations.

Tests with the propeller on were made at a dynamic pressure of
8 pounds per square foot, which corresponds to a Mach number of 0.07 and

& Reynolds number of 1.99 X 106. Propeller rotatlional speeds varied from
0 to 5,000 rpm. The propeller blade angle was 26°, measured at a station
75 percent of the blade radius from the axis of rotation.

RESULTS AND DISCUSSION

Presentation of Deta

In order to determine the Magnus force and resulting moment on the
model, tests were made with the angle of sideslip varied and with the
angle of attack set at 0°. The Magnus force aend resulting moment
appeared in the form of changes in 1ift and pitching-moment coefficients
due to rotational speed. The basic tunnel date, from which this informa-
tion can be obtained, are given in figures k to 14 for the propeller-off
configurstions and in figures 15 to 25 for the propeller-on configurations.
The data for any specific configuration can be located by referring to
table I.

The datae are presented 1ln the following manner: Each figure contains
data for the variation of C, and Cg, with rotation of one specific sec-
tion or combination of sections of the model. The data are further sepa-
rated with respect to the sections on which the 1lift and pitching-moment
coefficlents were measured. For exsmple, figure 4 presents data obtained
with section 1 rotating, end the date are sepesrated as follows:
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Figure 4(a), C, and C; measured on section 1
Figure 4(b), Cp and C; measured on sections 1, 2, 3, and I
Figure 4(e), C, and Cj measured on sections 1, 2, 3, 4, and 5

Inasmuch as the dats of all figures show essentially the same trends,
the force and moment characterlstics are discussed in & general manner.

Propeller Off

Force characteristics.- The Magnus force on rotating sections and
sections upstream of rotating sections was small for all configurations
tested. Even with sections 1, 2, 3, and 4 rotating (29 percent of the
model length), the Magnus force meassured on sections 1, 2, 3, and 4 was
very smell (fig. T7(a)). However, the data showed that, with any section
rotating, the Magnus force on the entire model became felrly large at
high angles of sideslip. Therefore, it eppears that even though sections
upstresm of sectlon 5 could produce no spprecilable Magnus force on them-
selves, they could cause a Magnus force on section 5 (which is downstream
of the maximum dismeter). :

The foregoing results can be explained qualitetively on the basis of
an anslysis presented in reference 7. Consider the crossflow on a sectlon
of a eylinder at en angle of attack. (See fig. 26.) There is present in
the boundary layer some vorticity due to the boundary-layer velocity
gradient. For a eircular cylinder the net vorticlty is zero because the
vorticity is equal and opposite on the two sides of the plene including
the cylinder center line and the cross wind (fig. 26(a)). If the flow
separates from the cylinder, there are two shed vortices of equal strength
but of opposite sign (fig. 26(b)) and, hence, the system as a whole remains
with no net vortieity. If the cylinder 1s rotated, the shed vortices
become displaced as indicated in figure 26(c). The points of separation
end, thus, the velocities and strengths of the two vortices are no longer
equal. It is assumed that the separation point located in the region where
the peripheral veloclty is in the direction of the free-stream veloclity i
moves downstream, but the other separation point does not move,. as has been
indicated experimentally. The separation point which did not move is in a
region of higher veloclty than the displaced separation point and, hence,
is the source of the stronger shed vortex. Since the vortlelty of the
entire system must still be zero, a retained vortex of strength equal to
the difference in strengths of the two shed vortices remains wlth the fuse-
lage. Thls retained vortex is the origin of the Magnus force. If there
were no flow separation and hence no shed vortices, it would be expected
that there would be no Magnus force associsted with rotation. Since the
Megnus force is dependent on boundsry layer and separation characteristics,
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both of which are strongly influenced by Reynolds number, then the Magnus
force should be dependent, to some extent, on Reynolds number. Thle fact
has been observed experimentally on infinite cylinders and is discussed
in references 4 and 7.

It is possible to use the foregoing concepts to rationalize the
results of the present investigation. On a moderately blunt fuselage,
flow separation does not occur at the nose but some distance back because
of the favorable pressure gradlent at the nose., Therefore, over some
sections of the nose there should be no Magnus force 1f the fuselage is
rotating. Rotation of the nose, however, causes the flow to rotate and
hence displaces the shed vortices which are treiling over the rear part
of the fuselage, and the result is a Magnus force. On this basis, it
would be expected that for a sharp-nose fuselasge, on which separation
occurs very close to the nose and at low angles of attack (ref. 8), sec-
tions near the nose would yield a Magnus force due to rotation of the
nose. :

The results of the present investigatlon showed that the magnitude
of the Magnus force on the entire model generally varled approximstely
linearly with the rotational speed of any rotating section for angles of
sideslip up to about 15°. At higher angles of sideslip, the Magnus force
increased linearly with rotational speed only at the lower rotational
gpeeds. The total force on the model at & given angle of sideslip and
rotational speed was greater when section 1 was rotatlng than when any
other individual section was roteting, particulerly at low rotational
speeds. (Compare figs. 4{(c) and 8(c), for example). Rotating any combi-
nation of sections ylelded greater Magnus effect on the entire body than
rotating any indlvidual sectlon - not because of the force on the sections
themselves but probably because of the increased displacement of the shed
vortices over the rear part of the body.

Moment characteristics.- The measured pltching-moment dste are pre-
sented about an axis located at 7O percent of the body length from the
nose. This location for the moment center was chosen so as to make the
center of mass of the model and support fall epproximately on the center
of the balance system and hence minimize varlations of static moments
with angle of sideslip. The pltching-moment deta are primerlily of interest
in determining the location of the center of pressure of the Magnus force.
The locetion of the center of pressure of the Msgnus force can be found
X - EE——JEEJE 0.70. The results showed that the cen-
1 Cy, - CL o
ter of pressure of the Magnus force on the whole body generally was slightly
behind the x/Z -0.70 position at low rotationel speeds and moved forward
as the rotational speed was increased. This fact is illustrated in fig-
ure 14 for the body with section 2 rotating. Results are given only for
angles. of sideslip from 15° to 30 ; at lower angles of sideslip, the Magnus
force and moment are too small to permit accurate determination of £/1.

from the equation
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Propeller On

The propeller thrust and torque cheracteristics for a blade angle
of 26° are given in figure 15 for B = 0°. The torque characteristics
can be used to determine the actusl direction of rotation of the air
flow over the pert of the body behind the propeller and, hence, to
indicate the direction of the Magnus force which might be expected for
various angles of sideslip. A positive torque coefficient indicates
clockwise rotation of the air over the body when viewed from downstream
and should yleld a negative value of Cp, for posltive values of 8.

Force characterlistics.- The force characteristics of the model wlth
the propeller on did not show as smooth a variation with rotational speed
as that obtained with propellers off. The data showed that any section
behind the propeller was cepable of producing e Megnus force which became
appreciable at high angles of sideslip and high rotationsl speeds. This
effect (previously investigated in ref. 9) was due to the circulation
induced by the propeller.

Any Magnus force on sections ahead of the propeller was obscured by
the rather erratic variation of Cp with propeller rotational speed.

Moment characteristics.- The moment characteristics of the model
with propeller on showed a smoother varliation with propeller rotational
speed then d1d the force data. The results indlcated rather large moments
at high angles of sideslip and high rotation speeds on sections behind the
propeller. :

The moment measured only on sectlions shead of and including the
propeller consisted of the moment due to direet propeller force and the
moment due to any Magnus force. Since the total moment was essentially
independent of the number of sections shead of the propeller and of
whether these sections were rotating, the Magnus force on sections ahead
of the propeller was very small,

It should be noted that in actusl application the clrculatory flow
behind a propeller is reduced by a wing or any protuberances from the
fuselage; hence, the Magnus force and resulting moment would tend to be
smeller than indiceted in the present investigation.

CONCLUSIONS

An experimental investigation has been made at low speed to deter-
mine the Magnus effect on various sections of a body of revolutlon of
which several sections could be rotated either es individusl units or
in combinations. The investigation included the measurement of the
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Magnus effect on the body alone and also on the body with a three-blade
propeller. The tests were made over an angle-of-gideslip range from

-5° to 30°, and at rotational speeds from Q to 8,000 rpm with the propel-
ler off and from O to 5,000 rpm with the propeller on. The results of
the investigation led to the following conclusions: o

1. With the propeller off, rotaetion of sections in the expanding
portion of the fuselage (that is, at the nose of the body) produced no
appreciable Magnus force on these sections.. However, rotation of these
sections did produce an appreclable Magnus force on the part of the body
downstream of the maximum dlameter. These results are believed to be
assoclated with the positlon and strength of the vortices shed from the

body.

2. With the propeller off, the center of pressure of the Magnus force
on the body was sbout 70 percent of the body length behind the nese and
moved forward with increase in rotational speed.

3. With a propeller on the body of revolution, a large Magnus force
was developed on sectlons of the body behind the propeller. The Magnus
force on sections shead of the propeller was small and independent of
whether these sectlons were rotating.

Langley Aeronautical Lahoratory,
National Advisory Committee for Aeronsutics,
Langley Fileld, Va., June 10, 1957.
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TABZE I.- INDEX TO DATA FIGURES
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Sacticna rotating Becmmti:'e ::ich fﬁ: and, "
Propeller off
' L Py
1 1,2, 35 and b (b
12 3, % snd5 3(e)
land 2° - 5‘1;
land 2, 1,2, 3, and b E1i
lizljlh‘lm5 5(e)
"1, 2, and 3 (a
1,2, 804 3 1,2, 35 end b 6o
. i 1,8 3 4 and 3 6(c
. 125@.5# T")
Ls 2, 3, mad'd 12,5 b, emas L3
1and 2 8(a)
2 1, 2, 3, and 4 Bb;
1,2, 35 4 and5 8(e
1, 2, and 3 9(a
2and 3 1, 2, 3, and h alb
1,2, 3, k and 5 gfe
1, 2, 3, end & 10(a)
2, 3, and 4 1:2;5:h,m5 100
' 1, 2, and 3 11(a)
3 l,z,j,a.m!k L'L'bg
. 1,2, 5, 4, and 5 1N(e
. 1, 2, 3, and 4 12(a)
>tk 1: 2: 3; 4, and 5 mgb)
N 1, 2, 5,a.ndh l}éa)
l, 2, 3, 4, snd 5- 13(b)
Propeller on®
1 -- 16(a)
1 1,2, 3 snd & J_ﬁb;
: 1,2, 3 4 and 5 16(c
land 2 17(a)
Land 2 1, 2, 3, snd 4 171,;
1, 2, 3, %, and 5 17(e
l, 2, and 3 18¢a)
L1, 2,and 3 1,2, 5 and k 15?,)
12,3 4 and 5 18(c}
: i N 1, 2, 3, and § 19(=)
L, 2 3, eud b 12,3 b and 5 J.gib)
1,2, 3, and ) 20(a
8 1,2, 3 5, a5 2ot
1, 2, and 3 ol(a
2 and 3 1, 2, 3, and & 21(b
1,2, 3 4 a5 2i(c
1,2, 3,and & 22(e
2, 3, and & l: 2: 5: g zzéb;
1, 2,803 23(e)
> 1,2, 3 and & 23(b)
1, 2, 3, 4, and 5 g5{c)
1,2, 5 and 4 21._2;)
Send b 1,2, 3k a5 2h({p)
. 1, 2, 3, and & 25(a
¢ 1, 2,3 k 608 5 2521&

Y

87he propeller ves always on rotating section ferthest from nose of model.
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1 Lift
Pifching morment
.
Wind /_
————
Side view
Y
Z
Y
h’//;gr ﬁ\
I
Top view

Figure l.- System of body axes. Arrows indicate positive directions of
force, moment, and angular displacement.
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30 90 | 1306 | 330 | 3033 | 265
1.00 [.37 1 /586 | 342 (4013 | 2.44
.50 168 || 1866 | 345 || 4/,.99 | 230
o0 .93 48 | 340 (| 43.86 | 219 |
.2 215 12333 | 334 | 45,00 | 2,06
3.00 | 230 1£5./9 | 328
400 [ 2 gu'ﬁos 557
500 | 278 128.93 314

Figure 2.- Body ordinates and geometric detalls of model.

A1l dimensions are in inches.
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(a) Propeller off. 1-92303

Figure 3.- Photographs of model used in investigation.
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(b) Propeller on.

Figure 3.- Concluded.




NACA TN 4013 15

04 e
2 i
Cn O
-04
Ly E
o -5
o ¢
. 2 @ s
A O
v /5
> 20
4 25
v 30
@% o
4 % B T F
2 22 {EiHHEHETT
4 ok _ - :
= Eﬁ :

c [/ 2 3 4 5 6 7 88X/’
Rofafional speed, rpmm

(a) C, end C; measured on section 1.

Figure L4.- Variation of Cp &and Cj wilith rotational speed. Section 1
rotating; propeller off.



16 NACA TN 4013

5
04 =
S i HE : = i
:
i ﬂ dé,
_ q , G6g
04 o .5 :é E
o Q0
& 85
A JO 11234 5_””]
v 15
> 20
4 25
v 30
4 ; :
= S
G of
-4 £
i £ e i

o | 2 3 4 5 6 7 8x]/0
Fotational speed, rmm

(b) Cp and Cp measured on sections 1, 2, 3, and 4.

Figure L4.- Continued.
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Figure 5.- Variation of C; and C; with rotational speed. Sec-
tions 1 and 2 rotating; propeller off. _
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Figure 5.- Continued.
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Figure 5.- Concluded.
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(a) Cp and Cj measured on sections 1, 2, and 3.

Figure 6.- Variation of C, and C; with rotational speed. Sec-
tions 1, 2, and 3 rotating; propeller off.
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Figure 6.- Continued.
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(a) C, and C; measured on sections 1, 2, 3, and L.

Filgure 7.- Variation of C, and Cp with rotational speed. Sec-
tions 1, 2, 3, and 4 rotating; propeller off.
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(a) Cp end Cj measured on sections 1 and 2.

Figure 8.- Varlation of Cp and Cj with rotational speed. Sec- o
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Figure 10.- Variation of Cp and Cp, with rotational speed. Sec-
tions 2, 3, and L rotating; propeller off.
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Figure 10.- Concluded.
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Figure 12.- Variation of Cp and Cj with rotational speed. Sec-
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Figure 12.- Concluded.
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Figure 15.- Thrust and torque characteristics of the propeller mounted
on section 1 of the body. B = 0°.
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Figure 16.- Vaeriation of Cm end Cj with rotational speed. Sec-
tion 1 rotating; propeller on.
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Figure 16.- Continued.
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Figure 17.- Variation of Cp and C; with rotational speed. Bec-
tions 1 and 2 rotating; propeller on section 2.
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Figure 17.- Concluded.
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Ffgure 18.- Variation of Cp and Cj with rotational speed. Sec-
tions 1, 2, and 3 rotating; propeller on section 3.
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Figure 18.- Continued.
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Figure 19.- Variation of Cp and Cy; with rotational speed. Sec-
tions 1, 2, 3, and 4 rotating; propeller on section L.
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F:Lgure 20.- Variastion of C, and Cj with rotatlonal speed. Sec-
tion 2 rotating; propeller on.
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Figure 21.- Variation of C, and Cj with rotational speed. Sec-
tions 2 and 3 rotating; propeller on section 3.
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Figure 22.- Variation of C, and C; wlth rotational speed. Sec-
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Figure 24,- Variastion of C, and Cp with rotationa; speed. Sec-
tions 3 and L4 rotating; propeller on section L.
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Figure 25.- Variation of C, end Cp with rotational speed. Sec-
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